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 ANNALS OF MATHEMATICS

 Vol. 42, No. 2, April, 1941

 AN ANALOGUE TO MINKOWSKI'S GEOMETRY OF NUMBERS IN A
 FIELD OF SERIES

 BY KURT MAHLER

 (Received November 16, 1939)

 i'Iinkowski, in his "Geometrie der Zahlen" (Leipzig 1910), studied properties
 of a convex body in a space RI? of n dimensions with respect to the set of all
 lattice points. Let F(X) = F(x1, ***, Xn) be a distance function, i.e. a func-
 tion satisfying the conditions

 F(O) = 0, F(X) > 0 if X $ 0;

 F(tX) = I t I F(X) for all real t;

 F(X - Y) _ F(X) + F(Y).

 The inequality F(X) ? 1 defines a convex body in Rn which has its centre at
 the origin X = 0. Suppose that this body has the volume V. The well known
 result of Minkowski asserts that if V _ 2 , then the body contains at least one
 (and so at least two) lattice points different from 0. This theorem is contained
 in the following deeper result of Minkowski (G.d.Z. ??50-53): "There are n

 independent lattice points X"), X(2) ... , X An) in Rn with the following properties:
 (1) F(X(1') = arl) is the minimum of F(X) in all lattice points X $ 0, and for
 k _ 2, F(X(k)) = a(k) is the minimum of F(X) in all lattice points X which are
 independent of V), (k-1) (2) The determinant D of the points X,
 ..- X(n) satisfies the inequalities

 1 _ I D I ? n!.

 (3) The numbers a(k) depend only on F(X) and not on the special choice of the
 lattice points X(k), and they satisfy the inequalities

 __ < or (2) < ... < a ... a

 (A new simple proof for the last part of this theorem was given by H. Davenport,
 Quart. Journ. Math. (Oxford Ser.), Vol. 10 (1939), 119-121).

 From Minkowski's theorem, properties of general classes of convex bodies
 can be obtained. For instance, there is a convex body G(Y) _ 1 polar to F(X) <
 1, and to this body correspond by the theorem n minima T(1), T(2) ... T(n)
 I have proved (Casopis 68 (1939), 93-102), that these minima are related to the
 a's by the inequalities

 1 _ T(h)T(n-h+) < (n!)2 (h= 1, 2,... )
 488
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 ANALOGUE TO MINKOWSKI S GEOMETRY OF NUMBERS 489

 From this result, applications to inhomogeneous Diophantine inequalities can
 be made, and in particular, generalizations of Kronecker's theorem can be
 obtained.

 The present paper does not deal with ordinary convex bodies in a real space.

 The n-dimensional space Pn with which we shall be concerned has its coordinates

 in a field S with a non-Archimedean valuation I x l; a distance function is any
 function satisfying

 F(O) = 0, F(X) > 0 if X # 0,

 F(tX) = I t I F(X) for all t in 9,

 F(X - Y) < max (F(X), F(Y)).

 The inequality F(X) < r then'defines the convex body C(-r), if r > 0. We

 show that every convex body is bounded, and that it has properties similar to

 a parallelepiped in real space.

 In particular, let ft be the field of all Laurent series

 x = afzf + af-,zf-Z + af2Zf-2 + ..

 with coefficients in an arbitrary field f; the valuation I x I is defined as 0 I = 0,
 and I x = = ef if af 0 0. Further let An be the modul of all points in P. , the
 coordinates of which are polynomials in z with coefficients in f; these points we
 call lattice points. We consider only distance functions F(X) which for all

 X 0 0 in P, are always as integral power of e. We shall define a certain posi-
 tive constant V as the volume of C(1); this constant is invariant under all linear

 transformations of P, with determinant 1, and the volume of C(1) and that of
 its polar reciprocal body C'(1) have the product 1. In analogy to Minkowski's

 theorem, the following theorem holds: "There are n independent lattice points

 X(I) ... , * (n) in P, with the following properties: 1) F(X(')) is the minimum of
 F(X) in all lattice points X $ 0, and for k > 2, F(X(k)) is the minimum of F(X)
 in all lattice points X which are independent of Xl, ..., X(k-1). 2) The deter-
 minant of the points X(') ... , X*n) is 1. 3) The numbers F(X(k)) = _(k)) which
 depend only on F(X) and not on the special choice of the lattice points X, satisfy
 the formulae

 < (1) < 'T(2) < . .< (n) (1) (2) . . (n) 1A

 Further, we have similar minima r (1)... , r(n) for the distance function G(Y)
 which defines the polar body C'(1); these are related with the cr's by the equations

 (h) (n-h+)= 1 (h = 1, 2, ... , n).

 These two results can be used to study special Diophantine problems in Pn;
 a few of them are considered as examples. All the proofs in this paper are
 based on the methods of Minkowski, and in one final paragraph I make use of
 ideas of C. L. Siegel.
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 490 KURT MAHLER

 I. CONVEX DQMAINS IN NON-ARCHIMEDEAN SPACES

 1. Notation. In this chapter, we denote by

 9? an arbitrary field,
 Ix Ia lnon-Archimedean valuation of the elements x of Ts,'
 Qt the perfect extension of R with respect to this valuation,
 Pn the n-dimensional space of all points or vectors

 X = (X1i *.. * Xn)y

 where the coordinates xi , , * xn lie in 9,
 X I the length of the vector X, viz.

 {X] max (I xi .n Ixn)

 We applyr the usual notation for vectors in Pn; thus if

 X = (xi,.**, x,) and Y =(y, **,yn),

 and a belongs to .-, then we write

 X +T Y = (Xi +- Yl ** Xn +T Yn) ,

 aX = (ax,, * aXn) ,
 n

 XY = E XhYh
 h-1

 For instance, the length I X I of X has the properties:

 (1) I X ? 0, with equality if and only if X = (0.*. , 0) = 0;

 (2) aXI = IaIIX Iifaisanyelementof 9;

 (3) IXFYI I wmax(I XlIY);

 (4) iXY I ?IXI Y.

 If Z is any sub-ring of R, and X"), ... , Xtr) are vectors in Pn , then these
 are called TZ-dependent, or Z-indepcndent, according as there exist, or do not

 exist elements al , ' , ar of Z not all zero, such that

 aiX ") + * * * + arX(r) = 0.

 A set of vectors of P,, is called a '-modul, if with X and Y it also contains
 aX + bY, where a and b are arbitrary elements of ); the modul has the dimen-

 '1 This means that the function I x I satisfies the conditions:

 oI = 0, but I x > 0 for x $ 0,

 I xy = I x 11y 1,

 X T Y ! I rMax (I X 1, YI)
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 ANALOGUE TO MINKOWSKI S GEOMETRY OF NUMBERS 491

 sion m, if there are an, but not m + 1, Z-independent elements in it. The di-
 mension of a Tr-modul is at most n, while that of any other class of moduli need
 not be finite.

 2. The distance function F(X). A function F(X) of the variable point X

 in P. is called a general distance function, if it has the properties:

 (A): F(X) _ 0;

 (B): F(aX) = I a I F(X) for all a in 9, hence F(O) = 0;

 (C): F(X + Y) < max (F(X), F(Y));

 it is called a special distance function or simply a distance function, if instead

 of (A) it satisfies, the stronger condition

 (A'): F(X) > O for X # 0.

 If T is a positive number, then the set C(T) of all points X with

 F(X) < T

 is called a convex set;2 if F(X) is a special distance function, then it is called a
 convex body. It is clear from the definition of F(X) that a convex set C(r)
 contains the origin 0, and that with Y and Y also aX + bY belong to it, if a

 and b are elements of f such that I a I < 1, I b < < 1. Further, if

 E(1) = (1, O 1.. I] 0), E(2 (O)i.. 1 ] 0)) ... En)=(.O*-,1

 are the n unit vectors of the coordinate system, then

 X = xiE(l) + + xnE(n), i.e. F(X) ? max (IxhiF(E(h))),
 h-1,2,- * * ,n

 and therefore

 (5) F(X) < riXI,
 where r is the positive constant

 r= max (F(E ^))).
 h-1,2. , * n

 C(T) contains therefore all points of the cube

 IXI <.

 We prove now that for special distance functions there is a second positive con-
 stant ay, such that for all points in Pn

 (6) F(X) _ y I X 1.

 2 We consider only convex sets and bodies as defined; they are obviously symmetrical
 with respect to the origin.
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 492 KURT MAHLER

 PROOF: We assume that (6) is not true and show that this leads to a con-
 tradiction.

 By hypothesis, there is an infinite sequence S of points

 X(h) = (Xh) .. ,X(h)) # 0 (h = 1, 2, 3, *..),

 such that

 Fj F(Xh)

 Since

 F(aX) F(X)

 I aX I I X I
 for all a # 0 in ft, we may assume that for the elements of S

 lim F(X(h)) = 0 X() = 1,
 h%-o

 so that in particular the n real sequences

 |X( |, |X ,(i) X ,X(2) . (k = 1, 2, *.. ,n)

 are bounded.
 Hence we can replace S by an infinite sub-sequence which we again call S:

 X(1), X(2), X(3), , sueb that the n real limits

 (7) ak = lim I Xk |h (k =1, 2, .. *, n)
 h-0X

 exist and satisfy the equation

 max ak=1.
 k- 1,2,. * * , n

 We call S a sequence of rank m, if exactly m of the limits a,, a2, ..* , an do not
 vanish; without loss of generality, these are the m first limits al, a2, .**, a".
 Obviously 1 ? m _ n.

 If the rank m = 1, then for large h

 iX()I=l, and (h) = (1,h) *,h) Ekl) + X*(h) (h) (h' U.,

 say, where

 lim |X*(h) = 0.
 h-0X

 Hence by (5)

 F(E(1)) = F (_X*() _<max ( (h)) F(X*(h))
 _ ma II

 =< max (F(x(h)), r X*(h)j)
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 ANALOGUE TO MINKOWSKI 'S GEOMETRY OF NUMBERS 493

 and therefore for h -* X

 0 < F(E(') ! 0, i.e. F(E()) =0,

 which is not true.

 Hence the rank m ? 2. Put

 xi(gh) X(g) X(h)
 Xm Xm

 Then from (7) for large g, h

 A(g h) < max F (X F (X < 2 max (F(X(g)), F(X(h))),

 and therefore

 lim F(X(Q')) = 0.
 g-4m0 h-0X

 Two cases are now possible:
 a: The limit

 lim I X(g.) - lim max (I x(gA) |, * hx?) l)
 g-4 D--#00
 h-Xo h-oo

 exists and is zero. Hence the n limits in St

 (h)

 (8) * = lrn (k= 1,2, * **, n)
 h-co Xmn

 all exist, and in particular

 x* = lim 1 = 1,

 so that

 if* = (X1,*-- Xn i4 0.

 By the continuity of F(X),3

 ~~X~~h) \ 1h) 0 F(X*) = lim F lim ) am F(X(h))0
 h-co \Xm amn h--*o

 which is not true.
 b: The limit

 lim X gh
 g-4m0
 h-oo

 3 If e > O is given, then there is a a > O, such that| F(X) -F(Y) I < e for X- Y i < 5,
 as follows easily from the properties (B), (C), and (5).
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 494 KURT MAHLER

 either does not exist, or exists and is different from zero. That implies that at
 least one of the limits (8) does not exist. Now obviously

 lim l X(g'h) I= (k = m, m + 1***,n),
 g-900
 h-oo

 since for large g, h

 XMh) 0; kx(Qh) m = Xi - _ ikmax (i xk i, Xk j)
 Xm(g Xmh am

 (k = m + 1, ,n).

 Hence the index IA of this non-existing limit (8) is < m - 1. For this index,

 lim x,,X
 g-Xoo
 h-oo

 either does not exist or exists and is different from zero. Hence there is an
 infinite one-dimensional sub-sequence

 (9) X(h) (i = 1, 2, 3, *.)

 of the double sequence X( h), such that for all i

 I X(g"hi I > C

 where c is a positive constant. Further obviously

 lim F(X(g' h) = O0
 i-00

 lim i x (2$hi)I = 0 (k =m, m + 1, ,n),
 i-00

 and all m - 1 first coordinates

 X (g,,hi) (k =1, 2, ... ,m -1)

 are bounded for i m*.

 Let i,, for every i, be the coordinate

 X (gihi) (k = 1, 2, ** ,m - 1)

 of maximum value J x(2; ih;) J; hence

 | it | >-C, since I I i i.

 Then there is an infinite subsequence

 X(gi i Ihi i) (j = 1, 2, 3, . .

 of the sequence (9), such that, if

 X -) Xoi i = (xj . Xn (j= 1, 2, 3, ... ),
 aii
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 then all n limits

 lim i x(| =a (k = 1, 2, ..., n)

 exist and satisfy the equations

 max (al,... an)=1, am= + a =+l * =an=O.
 and

 0 ? lim F(X'(j)) < - lim F(X(Q ,hii)) = 0, i.e. lim F(X'(j)) = 0,
 i-*oo C j-400, 0

 Therefore the new sequence S'

 X/(1) X/(2))XIW3

 has the same properties as S, but is of lower rank. Hence by induction with
 respect to the rank, a contradiction follows also in this case.-

 By the inequality (6), all points of the convex body C(r) lie in the finite cube

 lX ?

 a convex body is therefore bounded. Conversely, if a convex set is bounded,
 then it is a convex body. For if its distance function F(X) is not special, then
 there is at least one point X(0) 5 0, such that F(X(?)) = 0; hence all points of
 the straight line passing through X(?) and the origin 0 belong to the set.

 3. The character of a convex body. Let C(r) be a convex body, F(X) its
 distance function. If X' - 0 is an arbitrary vector, then the point X = aX',

 where a is an element of S, lies in C(r) provided that J a I is either sufficiently
 small and positive, or 0. Hence for every index h = 1, 2, *., n, the set Sh
 of all points

 X = (xi, ,xn) with x= = Xh-1 = O Xh # O

 of C(r) is not empty and contains an infinity, of elements. By (6),

 | Xh |<

 for the points of Sh. Therefore I x, J has a positive upper bound th in this set,
 and to every e > 0 there is a point

 Xh = (x (h) * (h),

 for which

 F(Xt ) < 7r = *= Xh-le =0 ?_ < | h
 1 + E
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 496 KURT MAHLER

 whereas there is no point X for which

 F(X)?r -, X=* **=Xh=O, | Xh > .

 The system of the n points

 (1) x,,2) x,(n)

 corresponding to e is obviously a-independent, and any point X of Pn can be
 written as

 X = ul.X?() + * + UneX ')

 where the u's belong to S and are given explicitly by

 n

 Uhe k E ahke Xk (h = 1, 2, *,n)
 k-1

 with a matrix

 (ahke) h o1 92, *,n

 of non-vanishing determinant and elements depending on e, but not on X.

 We distinguish now whether the valuation i x i of S, is discrete or not.
 If i x i is discrete, then there is a constant b > 1, such that for all x F 0 in

 I xj = bg

 4 If I x I is discreet, then u'(X) has a similar property: The set a of its values for X in
 Pn has no point of accumulation except 0. This is clear for n = 1, for then all vectors are
 multipla of the unit vector (1). Suppose that the statement has already been proved for
 all spaces of n - 1 dimensions, but that it is not true in Pn . There is therefore an infinite
 sequence 2 of points

 X(k) = (X(k), .. X(*)) (k = 1,2,3,* )

 in P, , such that all numbers

 F(X(1)), F(X(2)), F(X(3)),

 are different from each other, and that the limit

 lim F(X(k) = X
 k-_o

 exists and is positive. Write

 X(k) = Xjk) E() + X(k)* (k = 1, 2, 3, *..)

 where

 X()*= (0, X(k), , x(k)) (k = 1, 2, 3,

 lies in the (n - l)-dimensional subspace Pnp1: xi = 0, of Pn. By (6), l x(k) I is bounded in
 2:; hence we may assume that

 lim I x(*) J = ,
 k-ao
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 ANALOGUE TO MINKOWSKI'S GEOMETRY OF NUMBERS 497

 with a rational integer g depending oil x. In this case the set of values I x
 satisfies the equations

 he = h (h = 1,2 ... * n)

 for all sufficiently small e. We assume that e is sufficiently small and omit the
 index e. Put

 4P(X) = r max (Ilu 1,* I, ua 1) = r max (E ahkXk)
 h-1,2,- * *,n k-1 1

 Theii obviously

 F(X) ? X, if +,(X) < T.

 Conversely let X be any point in C(T). Then

 I X1 I - 41

 and therefore

 lul = - lxii?(1) 1.

 since, if necessary, we can replace ^ by an infinite subsequence. If , = 0, then for all
 sufficiently large k

 F(X(k)) = F(X(k*))

 so that the sequence X(1)*, X(2)*, X(3)*, ... has the same properties as 2, contrary to the
 hypothesis on P,1.

 Hence if

 Xjk+1) ( = q(k), then lim I q(k) 1 1,
 4~k)

 so that for all sufficiently large k

 q(k) = 1.

 Obviously

 X*(k) = X(k+-) q(k)X(k) =X(k+l)* - q(k)X(k)*

 lies in P,j1, and for all large k

 F(X(k)) = F(q(k)X(k)) $ F(X(k+l)).

 Hence

 F(X*(k)) - max (F(X(h)), F(X(k+l))).

 Therefore the sequence of positive numbers

 F(X*(l)), F(X*(2)), F(X*(2)),

 contains an infinity of different elements and has the limit X, so that again a contradiction
 is obtained.
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 498 KURT MAHLER

 Hence, if

 , = X - U1X = (O, 4 , En),

 then

 F(X') < max (F(X), I ul F(X('")) < T.

 and so X' also belongs to C(T). Therefore

 l X2 - 2

 so that

 1u2! - ___ ?2l 1.
 Ix2)

 Continuing in this way, we obtain all inequalities

 I u I _ 1,*,unI<1,

 i.e. we have proved

 4)T(X) ? t, if F(X) < r.

 The domain defined by

 1~~~~~~~~
 - mT(X) = ?1 CEhkXk |

 T h-1,2, - -, n jk-e

 is called a parallelepiped; our result may therefore be expressed in the form:
 If the valuation I x I is discrete, than every convex body C(r) is a parallelepiped.
 As we have proved, the two domains

 F (X) < r and dT (X) <

 are identical. In general, this does not imply the identity'

 F(X) = b(X)

 for all X, and the function 47(X) depends on r. Suppose, however, that the
 set of values of F(X) is the same as that of the values of I x 1, and that r is also
 an element of this set.6 Then

 bT (X) = 4(X)

 becomes independent of r, and for all X in Pn identically

 (10) F(X) = (X))

 as follows easily from the property (B) of the distance functions.--

 E.g., if 91 = R is the p-adic field (p > 3), n = 2, and

 F(X) = max (I x1 |P, 2 | x2 Ip)

 6 It suffices to assume that F(X) does not assume every positive value, and that the
 equation F(X) = T has no solution.
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 Next assume that the valuation j x I is not discrete, so that its values lie every-
 where dense on the positive real axis. Now the n vectors

 (1) X (2) x (n)

 will depend on e, and so does the function

 4TE(X) = T max (I Uh, I) = T max ( ahkeXk Y
 h-1,2,---,n h-1,2,-,n \ k-1

 Evidently

 (11) F (X) _ T if bTf(X) _

 Conversely, suppose F(X) < r. Then

 xI ? <
 and therefore

 I Ulf l -(l) I < 1+ (
 Ui I _ xi

 Hence, if

 X, = X - Ulf XI) = (0, , , x
 then

 F(X') < max (F(X), I Ulf I F(Xl))) < (1 + ()r.
 There is a number a, in ft such that

 F(XYe) ? j Ijr |?; (1 + O)r, i.e. F(a1 X') _ T-
 Hence

 jalX2j ? -2, 4 ?- (1 + E)02,

 and therefore

 jUE < (1+ )
 U e I I2

 so that, if

 Xe = X - 'U2e Xf = K - (u X? +- u2eXel) = (0, 0, X *** 4)

 then

 F(X') ? max (F(X'), I U2e I F( XE2)) < (1 + E)T

 Continuing in the same way, we obtain the n inequalities

 I Uhe I < (1 + E) (h = 1, 2, n),
 hence

 (12) bT((X) < (1 + E) , if F(X) <

 From (11) and (12), since e > 0 is arbitrarily small:
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 500 KURT MAHLER

 If the valuation i x I is everywhere dense on the positive axis, then the convex
 body C(r) can be approximated arbitrarily near both from the inside and outside
 by means of parallelepipeds.

 Take now, say r = 1 and put

 'ib (X) = (Di (X) = max (| ahka Xkcx)
 h=1,2,- * **,n k=1

 To every point X, there are two elements a and j3 of 9, such that

 4,(X) < I a I < (1 + E)cibe(X) and F(X) < | < (1 + e)F(X).
 Hence from (11)

 .(,,) (a)1 F F (X) _ 1a _ ( + e) 4,(X),

 and from (12)

 F (X)<_ 1, (e ) ? (1 + E)n, be,(X) ? (1 + E)I n< (1 + .) n+1 'F(X)

 and therefore uniformly in X

 (13) (1 + E)-(n+l). ?(X) F(X) ? (1 + e)16(X).

 In general, these inequalities cannot be improved to an equation analogous to
 (10), e.g. if F(X) = r has no solution.

 4. The character of a convex set. If F(X) is not special, then the set M of
 all solutions of F(X) = 0 contains elements other than X = 0. From (B) and
 (C), with X and Y also aX + bY belongs to M, if a and b are elements of R.
 Hence M is a t-modul, say of dimension n - m. Obviously m < n; it is pos-
 sible that m = 0, but then F(X) vanishes identically and C(r) is the whole
 space. Suppose therefore, that 1 < m < n- 1, and let

 p(m+l) p(m+2) p(n)

 be n - mg-independent elements of M,

 p(l) p(2)I... p(m)

 m other points of P , so that the system of n vectors

 p(l) p(2)).. p(n)

 is still h-independent. Then every point X in Pn can be written as

 X = v1P( ) + * + VnP(n)

 with elements vi, .-*, v. of f, viz.
 n

 Vh = Z fhkXk (h = 1,2, ..., n),
 k=1
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 ANALOGUE TO MINKOWSKIS GEOMETRY OF NUMBERS 501

 where the constant matrix in ?

 (flhk)h,k=1,2,...,n

 has non-vanishing determinant. Since

 n

 F E VkP) =0 O
 h=m+l

 we have

 F(X) = F ( vP(h) =*(V)

 where
 n n

 *(Vt) = (VI, @* Vm) = fkl kXA; X #nkXk)

 is now obviously a special distance function in the m-dimensional space Pm of
 all points V = (vI, **, vm). Every convex set with m > 0 can therefore
 be considered as a cylinder, the basis of which is a convex body of m < n di-
 mensions.

 5. The polar body of C(X). Let F(X) be the general distance function of ?4,
 Y an arbitrary vector in P,. Then we define a function G(Y) by

 (14) G(O) = 0; G(Y) = lim sup (I XY j) for all X with F(X) 1, if Y F 0.

 In order to determine this function, let

 Q(l) Q(2), ... , Q(n)

 be the n points in P,,, which satisfy the equations

 p(h) Q(W) = {1 for h = k,
 0 for h , ky

 and write

 Y = w1Q() +? + WnQ

 then

 n

 WA = Be hk Yk (h 1, 2, *.*.* n),
 k=1

 where the determinant of the matrix in St

 (7/hk)h,k=1,2,...,n

 does not vanish. Then

 XY = V1W1 + * + Vn~n

This content downloaded from 77.80.43.69 on Sun, 03 Dec 2017 20:10:41 UTC
All use subject to http://about.jstor.org/terms



 502 KURT MAHLER

 Hence obviously

 G(Y) = x, unless wm+1 = = Wn = 0.

 Suppose therefore that

 (15) W+l = Wm+2 - Wn O

 and put

 G(Y) X=(W)

 where W = (wi, , Wi) is a vector in Pm. Then from (14),

 (16) X(0) = 0; X(W) = lim sup (I VWV I)for all Vwith'I'(V) _ 1, if W ' 0,

 so that the relation of X(W) to 4(V) is the same as that of G(Y) to 17(X).
 By ?4, I(V) is a special distance function, and so is X(W), as follows easily
 from (16) and the properties (A'), (B), and (C) of [(V).

 We call G(Y) the polar function to F(X); for ?n < n it is not itself a distance
 function, but becomes one in the m-dimensional space (15), where it coincides

 with X(W). The set C'(1/r): G(Y) < 1/r, is further called the polar set to
 C(r); it lies entirely in (15) and here is identical with the convex body

 X(W) = I/r.
 Suppose now that rn = n, i.e. both F(X) and G(Y) are special distance func-

 tions; then the polar set C'(1 1-) becomes a convex body. We shall prove that
 in this case the relation between F(X) and G(Y) is reciprocal, i.e. F(X) is the polar
 function to G(Y) and C(r) the polar body to C'(1/r).

 This assertion is evident, if F(X) = X 1, for then obviously G(Y) = I YI.
 Further let

 = (ahk)h,k-1,2,...,n; = (ahk)hk-1,2...,n

 be an arbitrary matrix in Pt with nonvanishing determinant, and its comple-
 mentary matrix, so that for all X and Y the scalar product7

 UX4qKY = XY.

 Then the transformed distance functions G'(Y) = G( Y) and F'(X) = F(UX)

 have still the property that the first one is polar to the second, since

 G'(Y) = G(O KY) = IiM sup (I X. YI)
 F (X) S1

 = uiM sup (IOX.KYI) = lim sup (IXYI).
 F (fX)?1 F ' (X)?1

 Further, if F1(X) and F2(X) are two distance functions such that for all X

 F1(X) <. 12 (X),

 7The vector X' = (x, , x )=QXis defined by x, aEd X for h = 1,2,* , n.
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 then the polar distance functions G1(Y) and G2(Y) satisfy the inverted in-

 equality

 G1(Y) > G2(Y).

 We distinguish I1ow the same two cases as in ?3. If the valuation I x I is
 discrete, then we showed the existence of a matrix

 A = (ahk)hL,k=1,2,...,,

 in f with determinant different from zero, such that

 F(X) = D(X) = I AX I
 identically in X. The polar function to F(X) is therefore

 G(Y) = IAKYI,

 and since (AK)K = A, the statement follows at once.-I-n this case, the definition

 of G(Y) can obviously be replaced by the simpler one:

 (17) ~~G (Y) =max IXYI
 (17) ( ) x&o F(X)

 Secondly, let I x I be everywhere dense on the positive real axis. Then to
 every 5 > 0, there are two matrices

 A1 = (c))h,A=1,2,...,n and A2 = (ahk )h,k-1,2,...,n

 in 9 with non-vanishing determinants, such that if

 F1(X) = | A1X I, F2(X) = | A2X

 then for all X

 F1(X) < F(X) ? F2(X) ? (1 + 5)F1(X),
 as follows easily from (13). Hence if

 G1(Y) = AKYI, G2(Y) =I A YI
 are the polar functions to F(X) and F(X), then also

 G2(Y) < G(Y) < G,(Y);
 and8

 G2(Y) ' (1 + 26)G1(Y)

 8 There is a number a in f sUhel that

 1 + 6 ? a ? 1 + 26.

 TlieIi by hypothesis polar

 IFIA) < (1 + 6)1F2(X) _ F22(aX)
 Hence

 1+26 Y) < G2 (Y),

 ys since tlle polar fulletioll to P'.(a.X) is G,.a
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 for all Y. Since 6 can be taken arbitrarily small, the assertion follows again for
 the same reason.-In this case, the definition of G(Y) is easily replaced by

 (17') G (Y) = lim sup IXY I
 X31o F(X)'

 By the proved reciprocity of F(X) and G(Y), the formulae (17) and (17') re-
 main true if G(Y) is replaced by F(X) and vice versa.

 II. "GEOMETRY OF NUMBERS" IN A DOMAIN OF POWER SERIES

 6. Notation. We specialize now the fields 9S and 9 of ?1, and denote by
 f an arbitrary field,
 z an indeterminate,

 4k[z] the ring of all polynomials in z with coefficients in C,
 ? = k(z) the quotient field of Z, i.e. the field of all rational functions in z with

 coefficients in a,

 IxI the special valuation of ? defined by

 0= , if x =0,

 1ef, if x $ O is of orderf,9

 t the perfect extension of 9T with respect to this valuation, i.e. the field of
 all formal Laurent series

 X = afZf + afiZf-' + afr2-2Z + ...

 with coefficients in f; if af is the non-vanishing coefficient with highest

 index 0, then Ix = e
 An the set of all "lattice points" in Pn , i.e. that of all points with coordinates

 in Z.

 The valuation I x I is by definition a power of e with integral exponent. We
 assume the same for all distance functions which we consider from now onwards,
 and we shall consider only convex sets or bodies C(r), where r is an exact power
 of e, say r- = e.

 7. The volume V of a convex body C(1). Let F(X) be a special distance
 function, C(et) the convex body F(X) < et, where t is an arbitrary integer. It is
 obvious that the set m(t) of all lattice points in C(e') forms a f-modul. In the
 special case F(X) = X 1, this set has exactly

 Mo](t) = n(t + 1)

 C-independent elements. Hence, by the inequalities (5) and (6), m(t) has always
 a finite dimension AM(t), and this dimension is certainly positive for large t.

 9 The order of a rational function is the degree of its numerator minus the degree of its
 denominator.
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 Obviously

 (18) Mo(t + 1) = Mo(t) + n.

 Suppose that t is already so large that

 et > .

 Then a lattice point in C(et+l) can be written as

 X = Xo + zX1,

 where X0 and Xi are again lattice points, and the coordinates of X0 lie in t, i.e.

 X0j ? 1, F(Xo) ? r ? et+'.
 Hence

 F(zX1) ? max (F(X), F(Xo)) < et'+ F(Xi) ? et,

 so that X1 lies in m(t). Conversely, if Xi belongs to m(t), then

 F(X) ? max (F(zX1), F(Xo)) ? e".

 Now the two vectors Xo and zX1, where Xo and X1 are lattice points and I xo0 <
 1, are f-independent, and the X0 form a f-modul of dimension n. Hence

 (19) M(t + 1) = M(t) + n.

 The two equations (18) and (19) show that for large t, the function M(t) -
 Mo(t) of t is independent of t. Hence the limit

 (20) V = lim eM(t)-Ho(t)
 t-00

 exists; it is called the volume of the convex body C(1).10 In particular, if F(X) =
 X 1, then obviously V = 1.

 8. The invariance of V. Let

 Q = (ahk)h,k=1,2,..., and Q' = (ahkJhk==1,2...,n

 be a matrix with elements in S and determinant D # 0, and its inverse matrix.
 The linear transformation

 Y = OX or X = Q Y

 changes F(X) into the new distance function

 F(Y) = F(X) =F(QY);

 let C'(et) be the corresponding convex body F'(Y) < et, and V' the volume
 of C'(1). Then

 (21) V' = ID IV.

 10 This definition is analogous to that of the volume of a body by means of lattice pointB
 in an ordinary reai space.
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 PROOF: We denote by m'(t) the r-modul of all lattice points in C'(e'), by
 M'(t) the dimension of m'(t), and prove the statement in a number of steps.

 1: The elements of S lie in ?, and D belongs to f.
 The formulae Y = QX, X = W'Y establish a (1, 1)-correspondence between

 the elements X of m(t) and Y of m'(t). Obviously, this correspondence changes
 every linear relation

 a1Xl + * + arX( ) = 0

 with coefficients in f into the identical relation in the Y's, and vice versa; there-
 fore f-independent elements of m(t) or m'(t) are transformed into f-inde-

 pendent members of the other modul. Hence both moduls have the same
 dimension: M(t) = M'(t), q.e.d.

 2: Q is a triangle matrix

 all

 a2l a22 0

 an, an2 ... ann

 with elements in S and determinant

 D = alla22 ... an # 0.
 The equation Y = OX denotes that

 y, = a11x1,

 Y2 = a21X1 + a2X2,

 Yn = an1X1 + an2X2 + + annuX;

 hence every lattice point Y can be written as11

 Y = OX* + Y*1

 where X* and Y* are again lattice points and Y* = (yr, * , y) satisfies the
 inequalities

 Iy* I < I all I y* I 2 |< I a22 |, .. * * Y*l2|o < |jann |Ia

 Therefore

 Y* I < cl, i.e. F'(Y*) < c1r',

 where cl is a positive constant depending only on Q, and r' is the constant in (5)
 belonging to F'(Y ). The set of all vectors Y* forms a f-modul m* of dimen-
 sion d, where

 ed = IaiiI1a221 ... Iann = IDI.

 11 We use the trivial lemma: "To a and b = 0 in Z there is a q and an r in X, such that

 a = bq + r and I r i < i b 1.
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 Let t be so large that

 e' _ cC'.

 Then for X* in m(t)

 F'(Y) = F(Q'Y) = F(X* + QiY*) _ max (F(X*), F'(Y*)) < e',

 and conversely for Y in mn'(t)

 F(X* + Qi2Y*) _ et, i.e. F(X*) ? max (F(X* + QIY*), F'(Y*)) _ et.

 There is therefore a (1, 1)-correspondence between the elements Y of m'(t) and
 the pairs (X*, Y*) of one element X* of m(t) and one element Y* of m*. Hence
 M'(t) = M(t) + d, q.e.d.

 3: The elements of Q belong to Z.

 The result follows immediately from the two previous steps, since Q, as is
 well known,12 can be written as Q = Q1Q22, where the two factors are of the
 classes 1 and 2.

 4: The elements of Q lie in S.

 Now Q = QQ2 where both Qa and Qb are of the class 3, so that the statement
 follows at once.

 5: Q has elements in A, such that

 ID I = 1, I ahk l _ 1 (h, k = 1, 2, ... , n).
 Then the same inequalities hold for the inverse matrix Q?, so that for every
 point X

 IQXI _ AXIS I XI =i2IQQX I _ QX

 and therefore

 X= IQXI = IQ I.
 Now to every lattice point X there is a second lattice point Y such that with

 a suitable point Y*

 QX= Y+ Y* IY* < 1;

 then conversely

 Q?Y = X + X*, X*I < 1

 and

 X* = -QIY* QX* = Y*.

 The relation between X and Y is therefore a (1, 1)-correspondence which ob-

 viously leaves invariant the property of f-independence. Suppose that

 e' > r.

 12 This can be proved, e.g. by a method analogous to Minkowki's "adaptation" of a lat-
 tice; Geometrie der Zahlen ?46.
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 Then for X in m(t)

 F(X*) < r < e',

 and therefore

 F'(Y) = F(i'Y) = F(X + X*) < max (F(X), F(X*)) < et,

 so that Y lies in m'(t); conversely, if Y belongs to m'(t). then X is an element
 of m(t). Hence M(t) = M'(t), q.e.d.

 6: Finally, let Q have elements in R. Then it can be split into

 Q = Q4 + Q*

 where U24 is of the class 4, while the elements of Q* lie in 9 and have so small
 values that

 is of the class 5. Then the result follows at once, since Q = Q4Q5
 Two conclusions are immediate from (21). The convex body C(et), i.e.

 F(z-'X') ? 1, is obtained from C(1) by the transformation X' = ztX; hence
 it has the volume V(e') = entV. Secondly, let G(Y) be the polar distance func-
 tion to F(X), and V' the volume of the convex body C'(1), i.e. G(Y) ? 1. Then V

 and V' are related by the equation

 (22) VV'= 1.

 For by ?5, there is a matrix A with non-vanishing determinant, such that

 F(X) = AX| and G(Y) = AKY 1,
 hence

 V= QAI) and V'a= (IAkIj)- I A

 the statement is therefore obvious.

 9. The minima of F(X). To the distance function F(X), there exist n R-
 independent lattice points

 Xik = (Xk) x(k) (k = 1, 2, * , n),

 such that

 F(X(1)) = a(1) = e"1 is the rntinimm of F(X) in all lattice points X $ 0,
 F(X 2)) = o(2) = e"2 is the minimum of F(X) in all lattice points X which are

 f2-independent of X(l), etc., and finally
 F(X(n)) = (n) = egn is the minimum of F(X) in all lattice points X which are

 2-independent of Xylem X(2) ... , x(n-1)
 The numbers -(1) (2), * * , a- are called the n successive minima of F(X). By

 this construction, the determinant

 D = |~ ) Ihk==1,2, ..n
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 lies in : and does not vanish; further obviously

 (23) O < (1) < ?(2) < ...?< . (n) and <1-<2<*..-gn

 'We shall prove the two equations

 (24) IDI = 1,

 (25) a() (2) (n) = 1

 in the second one, V is again the volume of C(1). Thus, in particular, D is an
 element of F, and may obviously be taken as equal to 1.

 A: PROOF OF (24). Every point X in Pn can be written as

 X = y1X( ) + * ** +

 where the y's are elements of R. Then the coordinates Xh of X are linear func-
 tions with determinant D of the coordinates Yh of Y = (y1, * , yn). We
 define a new distance function I1(X) by

 I1(X) = I Y

 By (21), the convex body 11(X) < 1 has the volume I D 1; we determine it in
 the following way:

 If X is a lattice point, their Y also has its coordinates yh in Z. For since
 with Y also X is obviously a lattice point, we may- assume without loss of
 generality that

 (26) II(X) = IY < 1,

 and have to show that no lattice point X F 0 satisfies this inequality. Let m,

 where 1 < m < n, be the greatest index for which ym id 0. Thei
 m

 X = jE XhX, X(l e. X(m-1)
 h-1

 are T-independent lattice points, and by (26)

 F(X) ? max (I yl F(X(l)), I y* |m I F(X(m))) < ('

 in contradiction to the minimum property of jm)*
 Hence there are exactly Mi(t) = n(t + 1) f-independent lattice points such

 that 11(X) < et, viz. all points corresponding to a basis of f-independent points
 Y with I Y I < Ct. Therefore

 DI = ne (t)- _ 1 q.e.d.
 t -00

 B: PROOF OF (25). Now we use the fact that every point X in Pn caii be
 written as

 X = YJZ-gX~l) + + 8 Z-tnX(n7
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 where the y's belong to fP. Let .(X) be the distance function given by

 z(X) = jYj.

 Since

 F(z-g?^X(^) = 1 (h = 1, 2, * * , n),

 obviously

 F(X) < 1, if 2:(X) _ 1.

 But the converse is also true: If

 F(X) ? 1, then 2(X) ? 1,

 and therefore evidently

 F(X) = 2(X) = I Y I,

 identically in X.

 For suppose that on the contrary for a certain point X in Pn

 F(X) ? 1, but 2(X) > 1.

 Then let m with 1 < m ? n be the greatest index for which I Ym I > 1; hence
 if m < n

 Ym+l| 1 @*X|Yn |_1

 Write

 Yh = zyh + Yh (h = 1, 2, .. n),

 where the yZ are elements of X, the yh** elements of 9, and

 Ym 506 01 Ym+l * Yn = ? 0, ,* Yn |S

 and put

 Y = (y1, , yn) Y = (Y1 Yn*)
 so that

 Y = zY* + Y**.

 Obviously, Y* is a lattice point, Y** a point such that Y** < 1. Also write
 n m n

 X* = Z yghX zgOA X(h) X** = I -h (h)
 h-1 h-1 h-1

 so that

 X = zX* + X**.

 Then from Z:(X**) = Y** 1,

 F(X**) ? 1.
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 Hence

 F(zX*) < max (F(X), F(X**)) < 1, F(X*) < 1,
 and

 F(X0) < (i)

 where X0 = z"X*. This inequality, however, is impossible, since the m lattice

 points
 m

 XO= E yAm-ghX(h) X)X ... X(-)
 h-1

 are S-independent, so that by the minimum property of a(m)

 F(X(?') -> (r(m).

 Therefore (27) is true, so that by the invariance theorem of ?8

 V (1) a(2) .1 (n) =(~)a2 . ~)-

 since the transformation of X into Y has the determinant

 Dz-(g1+g2+ * +g3)

 The equation (25) is therefore proved.
 From this equation and from (23) in particular

 (1) <

 i.e. to every distance function F(X) there is a lattice point X # 0 such that

 F (X) < V1

 Here equality holds if and only if all minima

 (1) (2) (n)
 a = a = *. = a,

 thus certainly not, if V is not an integral power of en.

 10. The relations between the minima of F(X) and G(Y). To the n lattice

 points X), X2 *... , IX-n) defined in the last paragraph, we construct n points
 y(l) y(2) y(n) satisfying

 (27) X(h) y(n-k+l) =1 for h = k
 t0 for h sP k;

 since I D = 1, these points are lattice points. XWe further define n positive
 numbers

 (28) e (h = 1 2 ... n), ~(n-h+l)
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 so that

 (29) ? < (1) < r(2) < . < n) and j1 -< j2 -< * ..< Jn
 Then F(X) and the polar function G(Y) can be written as

 (30) F(X) = max (a(h) | Xy(n-h+l) I)
 h-1,2, * * n

 (31) G(Y) = max (r(h) i YX(n-h+l) I)
 h=1,2,- * * ,n

 thus in an entirely symmetrical way. For we proved in the preceding paragraph
 that if X is written as

 n

 (32) X = Z yh z X(h)
 h=1

 then

 F(X) = |Y, Y= (Y1,Y2X *Y * yn)

 But by multiplying (32) scalar with y(n)2 ..., y(l) we get by (27)

 Yh = Z * (XY( ) (h = 1, 2, * , n)

 and therefore (30). The formula (31) is a consequence of (30) by the results
 in ?5.13

 From (27) and (31)

 (33) G(y(h)) = (h) = ejh.

 We prove now that these numbers -(h) in their natural order are the n successive
 minima of G(Y) in An. Obviously it suffices to show that if

 g(1) (2) . Z(n)

 are any n R-independent lattice points, such that

 G (Z 1)) < G(Z(2)) < ..< G (Z(n)),

 13 We can prove (31) directly in the following way: Obviously

 n

 X = E3 (XY(n-h+l))X(h),
 h-1

 where the brackets are again the scalar products. Hence from (14)

 G(Y) = max (I XY l) = max( E (XY(nh+1))(X(h)Y)

 where the maximum extends over all points X of C(1), i.e. for which

 | XY(n-hil) |' 1_ = 7(n-h+l) (h = 1, 2, ., n).

 By choosing X such that there is equality in one of these conditions, but that all other
 scalar products XY(n-h+1) vanish, the assertion follows after replacing h by n - h + 1.
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 then 14

 G(Zh (yh) = h)

 Consider the n + 1 vectors

 (1) X(2)Y. .I (n-h+l) Z(1)IZ(2) z(h)

 At most n of these are k-independent; hence the scalar products

 XWi Z(j) i -11 2) .. n -h + 1)

 do not all vanish simultaneously, and at least one of them, say X(')Z(j), is
 different from zero. Since it is an element of Z, therefore

 X(i)Z(j) I > 1.

 Now by (17)

 l XY I _ F(X)G(Y),

 for all points X and Y. Therefore

 1 ? |X" Zi'j ? F(X('))G(Z(j)) ? F(X(nh+l))G(Z(h)) - 1

 as was to be proved.
 From (28) and (29) in particular

 (1)\~ ~ (1 < /n1v-1n1
 (34) r ? and xr(1 ? (<-'l)"l',

 so that if the minimum of F(X) in ? is small, then the same is true for that of
 G(Y), and vice versa.

 11. The relation between the homogeneous and the inhomogeneous problem.
 The reciprocity formulae of the preceding paragraph can be applied to in-
 homogeneous problems. Let P be an arbitrary point in Pn which is not neces-
 sarily a lattice point; it can be written as

 P = p1X"' + ... + P (8)

 where the p's lie in Mt. Put

 Ph = Xh+ rh (h = 1, 2, n),

 where Xh is an element of Z and

 |rh <- (h = 1, 2, ... ,n).

 14 The minima v(h) of F(X) have the analogous property.
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 Then the lattice point X = (xi, *. , *,n) satisfies the inequality
 n (n)

 F(P + X) =F(ZrhXc)) <

 or by (28)

 (35) F(P + X) _

 This inequality cannot in general be improved, since

 (36) F(1 ~~X(n) + X)>eTl (36)F

 for all lattice points X, as follows immediately from the Se-independence of the
 n vectors

 XM I X(2 * n**, X n X) + ZX.

 These two inequalities (35) and (36) relate the inhomogeneous F-problem to the
 homogeneous G-problem, in analogy with similar relations in many parts of
 mathematics.

 As an application, consider the two polar distance functions

 F(X) = max (l axn - xi 1, * * Ian-lXn - Xn- 1, e t IX

 G(Y) = max ( y 1, * , I Yn- 1 et I aly1 + * * * + an-lyn-1 + Yn |)

 where t is a positive integer. Assume that the numbers 1, al, ... I, an- are
 T-independent, so that for all lattice points Y = (Yi, * *, yn) $ 0

 aiyi + * - - + an-lyn-1 + Yn 5$ 0.

 Then, as t -- c, the first minimum r(1) of G(Y)

 T(1) )* 0)C

 Hence by (35), for every e > 0 and for every point P = (pi, * , pn) there is a
 lattice point X = (X1 , * , Xn) satisfying the inequalities

 I alXn X1 + pi I < e, - - * , I an-lXn -Xn- + Pn-1 |<E

 Thus we have established a result analogous to Kronecker's theorem.

 12. A property of matrices. Let

 Q = (ahk)hk=1,2, .*,n

 be a matrix in S with determinant 1; then there is a matrix

 UT = (uhk )hk 12 e
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 with elements in Z and determinant 1, such that the product matrix

 U= Qi* =(a~h)h,k=1,2, .. n

 satisfies the equation

 max (a~I)=1
 h=1 k=1,2,- ,

 PROOF :15 To the convex body C(1) belonging to the distance function

 F(X) = max2.,n Z:ahk Xk

 there are n lattice points Xl) XI) ... ,X~n of determinant D =1, such that
 the n minima

 F(X (h)) =- (h) (h =1, 2, .. n)

 satisfy

 Let~ XX=(xk, n. ) and X be the matrix

 X = (h)~~,,-,

 with elements in Z and determinant 1. We introduce new coordinates

 ,i ..1Yn by putting

 X = yiX('1+.. YnXn i.e., Xh _ x X~k (h =1,2,.n)

 then F(X) changes into

 F(X) = F'(Y) = max ( aikk)

 where

 =a kh~==, o ix.

 The n points X =X(h) are transformed into Y E E(h) (h = 1, 2, ... ,n); hence

 FP(E (h)) = (h) (h = 1, 2, . n,

 that is

 (37) max~~~~~~( ahk I ()(k =1, 2, ... ,n).

 15 An analogous theorem in the real field was proved some time ago by C. L. Siegel in
 a letter to L. J. Mordell. The present proof and theorem, though not stated in Siegel's
 paper, are obtained from it with only slight changes by making use of the results in ?9.
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 516 KURT MAHLER

 Hence every minor Am of order m formed from the m first columns and m arbi-
 trary rows of Q' satisfies the inequality

 (38) jAd | <(1)f (2) ... a(i)
 On the other hand, any determinant A of order m can be written as

 n

 A = xahth,
 h=1

 where the ah are the elements of its last column, and the ah their cofactors;
 therefore

 max ({6h|) > Al { max (iah DV}
 h-1,2t* * -,n h=1,2, * n

 We apply this inequality repeatedly to the determinant
 (1) (2) (n)

 An 1o- o' **.o'
 of ?2' and use (37) and (38); then it follows that there exists

 an (n - 1)th order minor An-, of An formed from the n - 1 first columns of R'
 and satisfying

 | Ao.1j =o (1), (2) (n-1)

 an (n - 2)th order minor An-2 of An-1 formed from the n - 2 first columns of U'
 and satisfying

 |I A~...2j~(1) (2) (n-2);

 etc.; a second order minor A2 of A3 formed from the two first columns of U' and
 satisfying

 A2 I (1) (2)

 and finally an element A1 of A2 lying in the first column of i' and satisfying

 I A1 I = LT1.

 Without loss of generality, we may assume that the determinants so con-
 structed are exactly the principle determinants

 Ar = I ahk Ihk=1,2,-.. (r = 1, 2, *. , n).

 We shall now construct a set of matrices of order n

 01 0 .-. O g(f) O ...- 1
 | ...*g** 0 o2 0 .

 m rows

 ..*~ n',i . ... m
 Um 1 ? ? (m 1) 22 * 1)

 0

 * in-m rows

 1 1 1 t~~~~~i
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 ANALOGUE TO MINKOWSKI'S GEOMETRY OF NUMBERS 517

 where the g's lie in Z, and Ui is the unit matrix. If

 Qm = Q'U1U2 * Ur = (a(k )hk1,2 m = 1, 2, ... , n),

 then Qi-=', and for h, k= 1, 2, *,n

 ah% ahk if k # m, and a = qfma l + ... + g(m2a) t + aa-.

 The n principal determinants of Om

 Ar= ahk hki,2,...,r (r = 1, 2, . ., n)

 are therefore equal to the corresponding ones of Om-, and so of !2'.
 By construction, the elements of Q1 satisfy the inequalities

 l a (k) | < (h, k - 1, 2, ...* n),
 and therefore also the inequalities

 |a(') a () (h = 1, 2, *..,n).
 Assume now that Ui, ***, Um-i were determined such that

 Ia(m-') 1< a k) (h, k II1 2, *.**,n)
 (3) -<( for h = 1, 2, *. , n; k = 1, 2, , m -1.

 Then Ur, as we shall prove now, can be constructed such that Qr satisfies the
 stronger inequalities

 (40) ( (k) (hk = 1,2, **,

 ) | ?ahk |< cr ~ foi h = 12, ., n; k= 1, 2, *-,r.

 To this purpose put

 a(' 1y + ... + a rm-1n + ajm) th(y1, ... , 7m-) = th (h 1, 2, ...n)

 and determine elements Y1, I72 Yrn-i of 2 such that

 tl = t2 = * * = tm-1 = 0.

 This system of linear equations has the determinant Am-, . On solving,

 Am-iYr = +:m-lr (r = 1, 2, - ,.m - 1),

 wheree Am-,r, is the (m - I)th order minor of Am obtained by omitting the mth
 row and the rth colujmn,. Hence fi'om (37),

 Ami f I O'(1) (mi) (m)

 IYr !r Am-,r < (r) . >

 ILet the clement q(m) of Urn, now be the number in Z satisfying the inequality

 I ain) Yrl I < 1 (r = 1.2 *.. m 1 ),
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 518 KURT MAHLER

 so that

 (?n)

 Then from the first system of inequalities (39) for h = 1, 2, ... , n

 = ) t |(qi ,~ g~n-)I) = gim a~l 1 + ...+ g9m-1ahm-1 +ahm
 / (m ) (i) \

 _?max ( * v(1) * _ *- _ (m-i) (mi) (m)

 and from the second system for h = 1, 2, *.. , m

 | (m) |= |th(9() g(m) 9 (M

 -=t (qf9f - y1 )aM + + (gqMZ - ym-Dahm1 < i"- = ( = )

 Since the remaining inequalities (40) are contained in (39), the matrix Um has
 the required property. Hence if

 U1 = XUI U2 * * n

 then this matrix satisfies the statement of our theorem.

 13. A property of the product of n inhomogeneous linear polynomials in n
 variables. Let 52 = (ahk)hk-1,2,.. ,n be again a matrix with elements in ? of
 determinant 1. We form the distance function

 F(X If) = max (efh I ahlX1 + ah2x2 + + ahnXn I),
 ce h91,2, . .n

 where fi , f2 . , fn are n integers such that fi + * + fn = 0. By the theo-
 rem of last paragraph, there is a matrix U with elements in Z and determinant 1,
 such that the product matrix

 = 1 U = (ahk)
 satisfies the equation

 n

 IImax (I ah*k)=1
 h-1 k-1,2, ( = ,n

 Let us choose the integers fh such that

 (41) e-h= max (IahkZ) (h =1, 2, .. ,n)
 k-1,2,- * *,n

 and put

 ahk = zh ahk (h, k = 2.(hk1, 2,*, n).

 Then by the transformation X = U Y, F(X) If0) changes into a new distance
 function

 F(X If0) = F'(Y) = max (IaZ*y* + * + aZ,"yn1),
 h-1,2, * *,n
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 ANALOGUE TO MINKOWSKI 'S GEOMNIETRY OF NUMBERS 519

 where now all coefficients ah** satisfy the inequalities I ak. I< 1, and their
 determinant is still 1. Obviously, for all n, fa-independent vectors Y1() =E(1)
 y(2) = E (2 Y ,(1) = E(n) the value of this function

 FP(Yr(h)) < 1 (h = 1, 2, , n).

 Therefore by the equation (25), necessarily

 Ff()r(l)) = F'(Y''9) = 2 . = F'(Y-") = 1,

 and so all minima of F(X If0), where the fO's are given by (41), have the same
 value 1, and in particular, the first minimum of F(X f0) has the exact value

 1 where V = 1 is the volume of F(X f0) ? 1.

 As an application, let a1, a2, ... , an be any n elements of f, and q1l
 '12 X 7 ** tn n elements of f satisfying the equations

 ah~l-0 + *X+ ahn 7h + ah = (h =1, 2, ... n).

 If y1, Y2, * n , yn are the elements of : for which

 IYh --Oh I = (h 1) 2,@n),
 e

 then obviously

 |ahlyl + + ahnyn + ah e (h =1, 2, ..., n).

 Hence the lattice point X = (Xl X2 X, X n) = U IY satisfies the inequalities

 | ahlxl + + ahnXn + ah I e (h = 1, 2, ... , n),

 and therefore the inequality

 n

 TI Iahlxl + + ahn Xn + ah I?< e .
 h=1

 Here the constant e- On the right-hand side is the best possible, as is clear if,
 e.g. U is the unit matrix and all ah, = lz.

 14. Distance functions in Mp. The field 9 of all rational functions with
 coefficients in f has valuations different from the "infinite" valuation I x
 which expresses the behavior of x at the point z = .

 Let r be any element of f, and p the "finite" point z = t. Then we define a
 valuation I x Io by putting for x $ 0

 x I =e

 where fo is that integer, for which neither the numerator nor the denominator
 of the simplified fraction (z - t)'fx are divisible by z - t; we denote by Ro
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 520 KURT MAHLER

 the perfect extension of 9t with respect to this valuation; it consists of all formal
 Laurent series

 X = af(Z - ;)f + CXf+1(Z - t)f+1 + Caf+2(2 _ t)f+2 +

 with coefficients in r, and if af # 0, then I x = e-f.
 Let now F(X) be any special distance function of 9; we use it as the measure

 for the size of X. Further let F(X I p) be a general distance function of Rf.
 Since

 F((z - )f = e-fF(X |

 this distance function may assume arbitrarily small values, if X lies in the modul

 An of all lattice points. By (5), there is a constant rp > 0 such that

 F(X ) < rFIx ;
 here for X = (xi,@ , x)

 XIX = max (I xi x,,
 Hence

 F(X | I F, for all lattice points X.

 Let t be an integer such that

 e-I < rp, i.e. t >logr)

 and C(e-t | ) the convex set of all points X in Pn for which

 F(X I p) _ e-t.

 Then the set m(- t | ,) of all lattice points ill C(e-t | ) contains with X and Y
 also aX + bY, when a and b lie in Z; it is therefore an 5E-modul. By the
 general theory of polynomial ideals,'6 this modul has a basis of n lattice points

 p k = (p(k) (k - 1, 2, * , n),

 such that every point X in An belongs to m(- t I p), if and only it can be written as

 X = YiP(1) + + ynP(n) with y, * ,yn in H.

 The determinant

 D(-t) = |(k) h,k=1,2,-.-,n i 0,

 and therefore the number

 A(-t)= I D(-t)

 is positive.

 16 Compare the basis theorem in ?80 of van der Waerden's "Moderne Algebra", Vol. II,
 1st ed.
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 ANALOGUE TO MINKOWSKI 'S GEOMETRY OF NUMBERS 521

 The function F(X) changes into a new distance function

 F'(Y) = F(X) = F(QY), 52 = (p (k)
 by the transformation (42). The convex body F'(Y) _ 1 has the volume

 V' = A\(-t)-1Vj

 where V denotes the volume of F(X) < 1. By the results in ?9, there are n

 lattice points y(l) , y(n) with determinant 1, such that

 F(Y()) ... F(Y(n)) - _(Vt).
 V.

 The transformed lattice points X .., X'n) given by

 X(k) = Q y(k) = (X(k) X(k) (k = 1, 2, ... , n)

 have the determinant

 D(-t) = |IXh |h,k=1,2,..-.n

 and satisfy the relations

 F(X(')) *.. F(X(n)) = -( t) F(X?k) _ e-' (k = 1, 2, *.,n).

 It is not difficult to prove that for large t

 A(- t) = O(ent), I D(-t) IP = O(e-t).

 In the following case, sharper results are obtained. Let

 F(X | p) = max (I ahlxl + + ahnmXn- + Xn-m+h I p),
 h=1,2,* n

 where the a's are elements in go such that

 I ahk l P <?1 (k 1 2 n )

 Then to every positive integer t there are elements Ahk in Z satisfying

 - akAhk l < e-t (k 1, 2, .. In)

 Hence, if Y1, * , yn belong to Z, and x1 ! , Xn are defined by

 Xi = Yi, . * Xn-m = Yn-m;

 (42) Xn-m+h = (Z - b)tYn-m+h - (Ahlyl + * + Ahn-mYn-m),

 (h = I1, 2, .. * *,m),

 then F(X I p) < e-'. Let F'(Y) = F(X) be the special distance function in 9
 derived from F(X) by the transformation (42). Then F'(Y) < 1 has the

This content downloaded from 77.80.43.69 on Sun, 03 Dec 2017 20:10:41 UTC
All use subject to http://about.jstor.org/terms



 522 KURT MAHLER

 volume I (z - I V = e-mV. Hence there are n M-independent lattice
 points y(l), ..., y() of determinant 1 such that

 mt

 F'(Y~l))... F'Y)) = V

 The n lattice points X(1,* ..., Xn) derived from these by (42) have the deter-
 minant (z -)mt and satisfy the conditions

 mt

 F(X(1)) ... F(X(n)) = e F(X(k) I p) < et (k = 1, 2, * * , n).

 MANCHESTER, ENGLAND.
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